348 research outputs found

    A new rhynchocephalian from the late jurassic of Germany with a dentition that is unique amongst tetrapods.

    Get PDF
    Rhynchocephalians, the sister group of squamates (lizards and snakes), are only represented by the single genus Sphenodon today. This taxon is often considered to represent a very conservative lineage. However, rhynchocephalians were common during the late Triassic to latest Jurassic periods, but rapidly declined afterwards, which is generally attributed to their supposedly adaptive inferiority to squamates and/or Mesozoic mammals, which radiated at that time. New finds of Mesozoic rhynchocephalians can thus provide important new information on the evolutionary history of the group. A new fossil relative of Sphenodon from the latest Jurassic of southern Germany, Oenosaurus muehlheimensis gen. et sp. nov., presents a dentition that is unique amongst tetrapods. The dentition of this taxon consists of massive, continuously growing tooth plates, probably indicating a crushing dentition, thus representing a previously unknown trophic adaptation in rhynchocephalians. The evolution of the extraordinary dentition of Oenosaurus from the already highly specialized Zahnanlage generally present in derived rhynchocephalians demonstrates an unexpected evolutionary plasticity of these animals. Together with other lines of evidence, this seriously casts doubts on the assumption that rhynchocephalians are a conservative and adaptively inferior lineage. Furthermore, the new taxon underlines the high morphological and ecological diversity of rhynchocephalians in the latest Jurassic of Europe, just before the decline of this lineage on this continent. Thus, selection pressure by radiating squamates or Mesozoic mammals alone might not be sufficient to explain the demise of the clade in the Late Mesozoic, and climate change in the course of the fragmentation of the supercontinent of Pangaea might have played a major role

    HIVAN and medication use in chronic dialysis patients in the United States: analysis of the USRDS DMMS Wave 2 study

    Get PDF
    BACKGROUND: The use and possible effects of factors known to improve outcomes in patients with human immunodeficiency virus associated nephropathy (HIVAN), namely of angiotensin converting enzyme inhibitors (ACE) and antiretroviral therapy, has not been reported for a national sample of dialysis patients. METHODS: We conducted a historical cohort study of the United States Renal Data System (USRDS) Dialysis Morbidity and Mortality Study (DMMS) Wave 2 to identify risk factors associated with increased mortality in these patients. Data were available for 3374 patients who started dialysis and were followed until March 2000. Cox Regression analysis was used to model adjusted hazard ratios (AHR) with HIVAN as a cause of end stage renal disease (ESRD) and its impact on mortality during the study period, adjusted for potential confounders. RESULTS: Of the 3374 patients who started dialysis, 36 (1.1%) had ESRD as a result of HIVAN. Only 22 (61%) of patients with HIVAN received antiretroviral agents, and only nine patients (25%) received combination antiretroviral therapy, and only 14% received ACE inhibitors. Neither the use of multiple antiretroviral drugs (AHR, 0.62, 95% CI, 0.10, 3.86, p = 0.60), or ACE inhibitors were associated with a survival advantage. Patients with HIVAN had an increased risk of mortality (adjusted hazard ratio, 4.74, 95% Confidence Interval, 3.12, 7.32, p < 0.01) compared to patients with other causes of ESRD. CONCLUSIONS: Medications known to improve outcomes in HIV infected patients were underutilized in patients with HIVAN. Adjusted for other factors, a primary diagnosis of HIVAN was associated with increased mortality compared with other causes of ESRD

    Evolution of hindlimb muscle anatomy across the tetrapod water-to-land transition, including comparisons with forelimb anatomy

    Get PDF
    Tetrapod limbs are a key innovation implicated in the evolutionary success of the clade. Although musculoskeletal evolution of the pectoral appendage across the fins‐to‐limbs transition is fairly well documented, that of the pelvic appendage is much less so. The skeletal elements of the pelvic appendage in some tetrapodomorph fish and the earliest tetrapods are relatively smaller and/or qualitatively less similar to those of crown tetrapods than those of the pectoral appendage. However, comparative and developmental works have suggested that the musculature of the tetrapod forelimb and hindlimb was initially very similar, constituting a “similarity bottleneck” at the fins‐to‐limbs transition. Here we used extant phylogenetic bracketing and phylogenetic character optimization to reconstruct pelvic appendicular muscle anatomy in several key taxa spanning the fins‐to‐limbs and water‐to‐land transitions. Our results support the hypothesis that transformation of the pelvic appendages from fin‐like to limb‐like lagged behind that of the pectoral appendages. Compared to similar reconstructions of the pectoral appendages, the pelvic appendages of the earliest tetrapods had fewer muscles, particularly in the distal limb (shank). In addition, our results suggest that the first tetrapods had a greater number of muscle‐muscle topological correspondences between the pectoral and pelvic appendages than tetrapodomorph fish had. However, ancestral crown‐group tetrapods appear to have had an even greater number of similar muscles (both in terms of number and as a percentage of the total number of muscles), indicating that the main topological similarity bottleneck between the paired appendages may have occurred at the origin of the tetrapod crown group

    Integrating a family-focused approach into child obesity prevention: Rationale and design for the My Parenting SOS study randomized control trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More than 20% of US children ages 2-5 yrs are classified as overweight or obese. Parents greatly influence the behaviors their children adopt, including those which impact weight (e.g., diet and physical activity). Unfortunately, parents often fail to recognize the risk for excess weight gain in young children, and may not be motivated to modify behavior. Research is needed to explore intervention strategies that engage families with young children and motivate parents to adopt behaviors that will foster healthy weight development.</p> <p>Methods</p> <p>This study tests the efficacy of the 35-week My Parenting SOS intervention. The intervention consists of 12 sessions: initial sessions focus on general parenting skills (stress management, effective parenting styles, child behavior management, coparenting, and time management) and later sessions apply these skills to promote healthier eating and physical activity habits. The primary outcome is change in child percent body fat. Secondary measures assess parent and child dietary intake (three 24-hr recalls) and physical activity (accelerometry), general parenting style and practices, nutrition- and activity-related parenting practices, and parent motivation to adopt healthier practices.</p> <p>Discussion</p> <p>Testing of these new approaches contributes to our understanding of how general and weight-specific parenting practices influence child weight, and whether or not they can be changed to promote healthy weight trajectories.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00998348">NCT00998348</a></p

    Degradation, Bioactivity, and Osteogenic Potential of Composites Made of PLGA and Two Different Sol–Gel Bioactive Glasses

    Get PDF
    We have developed poly(l-lactide-co-glycolide) (PLGA) based composites using sol–gel derived bioactive glasses (S-BG), previously described by our group, as composite components. Two different composite types were manufactured that contained either S2—high content silica S-BG, or A2—high content lime S-BG. The composites were evaluated in the form of sheets and 3D scaffolds. Sheets containing 12, 21, and 33 vol.% of each bioactive glass were characterized for mechanical properties, wettability, hydrolytic degradation, and surface bioactivity. Sheets containing A2 S-BG rapidly formed a hydroxyapatite surface layer after incubation in simulated body fluid. The incorporation of either S-BG increased the tensile strength and Young’s modulus of the composites and tailored their degradation rates compared to starting compounds. Sheets and 3D scaffolds were evaluated for their ability to support growth of human bone marrow cells (BMC) and MG-63 cells, respectively. Cells were grown in non-differentiating, osteogenic or osteoclast-inducing conditions. Osteogenesis was induced with either recombinant human BMP-2 or dexamethasone, and osteoclast formation with M-CSF. BMC viability was lower at higher S-BG content, though specific ALP/cell was significantly higher on PLGA/A2-33 composites. Composites containing S2 S-BG enhanced calcification of extracellular matrix by BMC, whereas incorporation of A2 S-BG in the composites promoted osteoclast formation from BMC. MG-63 osteoblast-like cells seeded in porous scaffolds containing S2 maintained viability and secreted collagen and calcium throughout the scaffolds. Overall, the presented data show functional versatility of the composites studied and indicate their potential to design a wide variety of implant materials differing in physico-chemical properties and biological applications. We propose these sol–gel derived bioactive glass–PLGA composites may prove excellent potential orthopedic and dental biomaterials supporting bone formation and remodeling

    High Refractive Index Silicone Gels for Simultaneous Total Internal Reflection Fluorescence and Traction Force Microscopy of Adherent Cells

    Get PDF
    Substrate rigidity profoundly impacts cellular behaviors such as migration, gene expression, and cell fate. Total Internal Reflection Fluorescence (TIRF) microscopy enables selective visualization of the dynamics of substrate adhesions, vesicle trafficking, and biochemical signaling at the cell-substrate interface. Here we apply high-refractive-index silicone gels to perform TIRF microscopy on substrates with a wide range of physiological elastic moduli and simultaneously measure traction forces exerted by cells on the substrate

    Design and evaluation protocol of "FATaintPHAT", a computer-tailored intervention to prevent excessive weight gain in adolescents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computer tailoring may be a promising technique for prevention of overweight in adolescents. However, very few well-developed, evidence-based computer-tailored interventions are available for this target group. We developed and evaluated a computer-tailored intervention for adolescents targeting energy balance-related behaviours: i.e. consumption of snacks, sugar-sweetened beverages, fruit, vegetables, and fibre, physical activity, and sedentary behaviours. This paper describes the planned development of a school-based computer-tailored intervention aimed at improving energy balance-related behaviours in order to prevent excessive weight gain in adolescents, and the protocol for evaluating this intervention.</p> <p>Methods/design</p> <p>Intervention development: Informed by the Precaution Adoption Process Model and the Theory of Planned Behaviour, the computer-tailored intervention provided feedback on personal behaviour and suggestions on how to modify it. The intervention (VETisnietVET translated as 'FATaintPHAT') has been developed for use in the first year of secondary school during eight lessons.</p> <p>Evaluation design: The intervention will be evaluated in a cluster-randomised trial including 20 schools with a 4-months and a 2-years follow-up. Outcome measures are BMI, waist circumference, energy balance-related behaviours, and potential determinants of these behaviours. Process measures are appreciation of and satisfaction with the program, exposure to the program's content, and implementation facilitators and barriers measured among students and teachers.</p> <p>Discussion</p> <p>This project resulted in a theory and evidence-based intervention that can be implemented in a school setting. A large-scale randomised controlled trial with a short and long-term follow-up will provide sound statements about the effectiveness of this computer-tailored intervention in adolescents.</p> <p>Trial Registration</p> <p>ISRCTN15743786</p

    Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate

    Get PDF
    Mesenchymal stem cell (MSC) differentiation is regulated in part by tissue stiffness, yet MSCs can often encounter stiffness gradients within tissues caused by pathological, e.g., myocardial infarction ∼8.7±1.5 kPa/mm, or normal tissue variation, e.g., myocardium ∼0.6±0.9 kPa/mm; since migration predominantly occurs through physiological rather than pathological gradients, it is not clear whether MSC differentiate or migrate first. MSCs cultured up to 21 days on a hydrogel containing a physiological gradient of 1.0±0.1 kPa/mm undergo directed migration, or durotaxis, up stiffness gradients rather than remain stationary. Temporal assessment of morphology and differentiation markers indicates that MSCs migrate to stiffer matrix and then differentiate into a more contractile myogenic phenotype. In those cells migrating from soft to stiff regions however, phenotype is not completely determined by the stiff hydrogel as some cells retain expression of a neural marker. These data may indicate that stiffness variation, not just stiffness alone, can be an important regulator of MSC behavior
    corecore